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We obtain the large deviation functional of a density profile for the asymmetric
exclusion process of L sites with open boundary conditions when the asymmetry
scales like 1

L . We recover as limiting cases the expressions derived recently for
the symmetric (SSEP) and the asymmetric (ASEP) cases. In the ASEP limit, the
nonlinear differential equation one needs to solve can be analysed by a method
which resembles the WKB method.
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1. INTRODUCTION

The study of steady states of non-equilibrium systems has motivated a lot
of works over the last decades. (1–9) It is now well established that non-equi-
librium systems exhibit in general long-range correlations in their steady
state. (4, 10–12)

One of the most studied examples of non-equilibrium system is the one
dimensional exclusion process with open boundaries. (4, 10, 13) The system is a
one dimensional lattice gas on a lattice of L sites. At any given time, each
site (1 [ i [ L) is either empty or occupied by at most one particle and
the system evolves according to the following rule: in the interior of the
system (2 [ i [ L − 1), during each infinitesimal time interval dt, a particle
attempts to jump to its right neighboring site with probability dt and to
its left neighboring site with probability q dt. The jump is completed if the
target site is empty, otherwise nothing happens. The parameter q represents
a bias (i.e., the effect of an external field in the bulk). The boundary sites



i=1 and i=L are connected to reservoirs of particles and their dynamics
is modified as follows: if site 1 is empty, it becomes occupied with proba-
bility a dt by a particle from the left reservoir, and if it is occupied, the
particle is removed with a probability c dt or attempts to jump to site 2
(succeeding if this site is empty) with probability dt. Similarly, if site L is
occupied, the particle may either jump out of the system (into the right
reservoir) with probability b dt or to site L − 1 with probability q dt, and if
it is empty, it becomes occupied with probability d dt.

The rates a, b, c, and d at which particles are injected at sites 1 and L
can be thought as the contact of the chain with a reservoir of particles at
density ra at site 1 and with a reservoir at density rb at site L. The reservoir
densities ra and rb are related to a, b, c, and d by (see Appendix A)

ra=
1 − q+a+c − `(a − c − 1+q)2+4ac

2(1 − q)
, (1.1a)

rb=
1 − q − b − d+`(b − d − 1+q)2+4bd

2(1 − q)
. (1.1b)

For q=1, the bulk dynamics is symmetric and the model is called the
Symmetric Simple Exclusion Process (SSEP). (2, 3) In the steady state, there
is a current of particles flowing from one reservoir to the other (when
ra ] rb) and the steady state density profile is linear.

For 0 [ q < 1, the bulk dynamics is asymmetric and the model is called
the Asymmetric Simple Exclusion Process (ASEP). (14–16) When the densities
ra and rb vary, the system exhibits phase transitions, with different phases:
a low density phase, a high density phase and a maximal current phase. (16–19)

On a macroscopic scale, the steady state profile is constant except along the
first order transition line ra=rb < 1/2 separating the low and the high
density phases.

In the large L limit, the probability PL({r(x)}) of observing a given
macroscopic density profile r(x), 0 [ x [ 1 can be expressed through the
large deviation functional F({r(x)}; ra, rb) by

PL({r(x)}) ’ e−LF({r(x)}; ra, rb ). (1.2)

This large deviation functional F is an extension of the notion of free
energy to non-equilibrium systems. (20–22)

One can think of a number of distinct definitions of PL({r(x)})
which all lead to the same F in the large L limit. Here, by dividing the
system into k boxes of size L1, L2,..., Lk (with ;k

i=1 L i=L), we define
qL1, L2,..., Lk

(N1, N2,..., Nk) as the probability of observing in the steady state
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N1 particles in the first box, N2 in the second,..., Nk in the last box. Then if
we identify PL({r(x)}) with qL1, L2,..., Lk

(N1, N2,..., Nk), one expects that for
large L, (1.2) holds when 1 ° L i ° L and Ni is the integer part of L ir(xi)
where xi=; i

j=1
Lj

L .
In refs. 20, 21, 23–26, the following exact expressions of

F({r(x)}; ra, rb) were obtained:
In the symmetric case, i.e., for q=1, it was shown in refs. 20 and 21

that

FSSEP({r(x), ra, rb})

=sup
F(x)

F
1

0
dx 3r(x) log 1 r(x)

F(x)
2+(1 − r(x)) log 1 1 − r(x)

1 − F(x)
2+log 1 FŒ(x)

rb − ra

24 ,

(1.3)

where the sup is over all monotone functions F(x) which satisfy

F(0)=ra, F(1)=rb. (1.4)

The auxiliary function F(x) which achieves the sup is the monotone solu-
tion of the nonlinear differential equation

r(x)=F(x)+
F(x)(1 − F(x)) Fœ(x)

FŒ(x)2 , (1.5)

with the boundary conditions (1.4).
In the asymmetric case (i.e., for q < 1), the expression of

F({r(x)}; ra, rb) is given (25, 26)

• in the case ra \ rb by

FASEP({r(x)}; ra, rb)=−K(ra, rb)+sup
F(x)

F
1

0
dx r(x) log[r(x)(1 − F(x))]

+(1 − r(x)) log[(1 − r(x)) F(x)], (1.6)

where the sup is over all monotone non-increasing functions F(x) such that
F(0)=ra and F(1)=rb and

K(ra, rb)= sup
rb [ r [ ra

log[r(1 − r)]. (1.7)

As shown in ref. 26, the function F(x) which gives the sup in (1.6) is the
derivative of the concave envelope of >x

0 [1 − r(xŒ)] dxŒ, whenever this
derivative belongs to ]rb, ra[, and it takes the value ra or rb otherwise. As

Large Deviation Functional of the Weakly Asymmetric Exclusion Process 539



a result, when F(x) differs from ra and rb, it is made up of a succession of
domains where F(x)=1 − r(x) and of domains where F(x) is constant (as
F(x) is decreasing, it cannot in general coincide with 1 − r(x) everywhere).
In the domains where F(x) is constant (and differs from ra and rb) it
satisfies a Maxwell construction rule: when F(x)=C for 0 < t [ x [ u < 1,
its value is determined by

(u − t) C=F
u

t
[1 − r(x)] dx. (1.8)

• and in the case ra [ rb by

FASEP({r(x)}; ra, rb))

=− K(ra, rb)+ inf
0 [ y [ 1

3F
y

a
dx r(x) log[r(x)(1 − ra)]

+(1 − r(x)) log[(1 − r(x)) ra]

+F
b

y
dx r(x) log[r(x)(1 − rb)]+(1 − r(x)) log[(1 − r(x)) rb]4 ,

(1.9)

where

K(ra, rb)=min[log ra(1 − ra), log rb(1 − rb)]. (1.10)

The goal of the present paper is to reconcile the expression valid in the
symmetric case (1.3) with those valid in the asymmetric case (1.6), (1.9) by
calculating the large deviation functional in a weak asymmetry regime,
which interpolates between the two, where q Q 1 as L Q . with q=1 − l

L .
The SSEP and the ASEP appear therefore as limiting cases of the results
obtained in the present paper.

The outline of the paper is as follows: in Section 2, we summarize our
results by writing several equivalent expressions of F in the weak asym-
metry regime. In Section 3 we give the details of our derivation. In Section 4,
we show how the SSEP and the ASEP expressions can be recovered in the
limit l Q 0 and l Q .. The large l limit is somewhat reminiscent of the
WKB method and the calculation of the position (1.8) of the plateaux in
the Maxwell construction of the function F(x) is very similar to the one
which leads to the Bohr–Sommerfeld rule in the WKB method. (27, 28) In
Section 5 we extend the range of validity of our results and show in
particular that they remain true when detailed balance is verified.
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2. MAIN RESULTS

We consider here a weak asymmetry regime defined as a situation
where q Q 1 as L Q .,

q=1 −
l

L
(2.1)

keeping l fixed.
For technical reasons which will become clear at the end of Section 3.3,

our results are limited to the case

l > 0 and ra > rb. (2.2)

In Section 5, we will discuss some extensions to a broader range of parameters.
Our main result is that in the weak asymmetry regime, the large

deviation functional is given by

F({r(x)}; ra, rb)=−Kl(ra, rb)+ inf
{y(x)}

3y(0) log
ra

1 − ra
+y(1) log

1 − rb

rb

+F
1

0
dx 5− log

1 − e−ly

l
+r log r+(1 − r) log(1 − r)

+(1 − r+yŒ) log(1 − r+yŒ)+(r − yŒ) log(r − yŒ)64

(2.3)

where the inf is over all continuous positive functions y(x) satisfying

r(x) − 1 [ yŒ(x) [ r(x).

We will show at the end of Section 3.5 that the constant Kl(ra, rb) is given
by

Kl(ra, rb)=log(J) − F
ra

rb

dr

lr(1 − r)
log 11 −

lr(1 − r)
J

2 (2.4)

where the parameter J is solution of

F
ra

rb

dr

J − lr(1 − r)
=1. (2.5)
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The parameter J is in fact related to the steady state current j by (see
Section 3.5)

J= lim
L Q .

Lj (2.6)

Expression (2.3) for F can be rewritten in a form which interpolates
between the symmetric (1.3) and the asymmetric (1.6) cases (see Section 3.4):

F({r(x)}; ra, rb)

=−Kl(ra, rb)+F
1

0
dx 3r log

r

F
+(1 − r) log

1 − r

1 − F

+log(F(1 − F) l − FŒ)+
FŒ

lF(1 − F)
log 1 −

FŒ

F(1 − F) l − FŒ

24

(2.7)

where the function F(x) is the solution of the differential equation

(F − r) FŒ
2+F(1 − F) Fœ+lF(1 − F)(F − 1+r) FŒ=0 (2.8)

with the boundary conditions

F(0)=ra F(1)=rb. (2.9)

In the range of validity of our derivation (2.2) this differential equation has
a unique solution, and this solution is monotone (see Section 3.4).

Actually, if we consider the right hand side of (2.7) as a functional of
function F, then (2.8) appears to be the condition that F maximizes this
functional under the constraint (2.9) (see the end of Section 3.4), leading to

F({r(x)}, ra, rb)

=sup
F

5− Kl(ra, rb)+F
1

0
dx 3r log

r

F
+(1 − r) log

1 − r

1 − F

+log(F(1 − F) l − FŒ)+
FŒ

lF(1 − F)
log 1 −

FŒ

F(1 − F) l − FŒ

246

(2.10)

where the sup is over all decreasing functions F satisfying (2.9).
As F is a sup over convex functions of r, it is a convex function of r

in domain (2.2).
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A by-product of (2.7) is (see Section 3.5) that the most likely profile
r̄(x) is solution of

F
ra

r̄(x)

dr

J − lr(1 − r)
=x. (2.11)

Depending on the boundary conditions this leads either to a tan profile,
a tanh profile, or a coth profile.

3. DERIVATION

3.1. The Matrix Method

The equal time steady state properties of the ASEP can be exactly
calculated using the so-called matrix method. (14) Let us consider a micro-
scopic configuration defined by its occupation number {yi} where yi=1
when site i is occupied by a particle, and 0 otherwise. It can be shown that
the steady state probability of such a configuration for a lattice of L sites
can be written as

P({yi})=
OW| <L

i=1 (Dyi+E(1 − yi)) |VP

ZL(q)
(3.1)

with ZL(q) being a normalization factor defined by

ZL(q)=OW| (D+E)L |VP (3.2)

where D and E are two operators fulfilling the followings algebraic rules:

DE − qED=D+E, (3.3a)

(bD − dE) |VP=|VP, (3.3b)

OW| (aE − cD)=OW|. (3.3c)

These rules (3.3a)–(3.3c) allow the computation of all equal time steady
state properties without the need of finding an explicit representation.

The two point correlation function OyiyjP (where the symbol O ·P
stands for the average with respect to the steady state probability) is given
by

OyiyjP=
OW| (D+E) i − 1 D(D+E) j − i − 1 D(D+E)L − j |VP

ZL(q)
(3.4)
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and the steady state current j between site i and i+1 is given by:

j=Oyi(1 − yi+1)P− qO(1 − yi) yi+1P. (3.5)

Using expression (3.4) for the correlation function and the algebra rule
(3.3a), one gets

j=
ZL − 1(q)
ZL(q)

. (3.6)

Clearly the current does not depend on the site i, as it should, due to the
conservation of the number of particles.

If we divide the system of size L in k boxes of size L1, L2,..., Lk the
probability of finding N1 particles in the first box, N2 in the second,... and
Nk in the last box is given by

qL1, L2,..., Lk
(N1, N2,..., Nk)=

OW| XL1
(N1) XL2

(N2) · · · XLk
(Nk) |VP

ZL(q)
(3.7)

where Xl(N) is the sum over all products of l matrices containing exactly N
matrices D and l − N matrices E.

3.2. A Representation for D and E

All physical quantities such as (3.4), (3.5), or (3.7) do not depend on
the representation of the matrices D and E and of the vectors |VP and OW|
which satisfy the algebra (3.3a)–(3.3c). Several representations have been
used to solve (3.3a)–(3.3c). (14–17, 29) We choose in this section a particular
representation which will be convenient for the remaining of our derivation.

If we write the operators D and E as infinite matrices of the form

D=
1

1 − q
r1 − d 1 − q 0 · · ·

0 1 − dq 1 − q2 0 · · ·
0 0 1 − dq2 1 − q3 0

z z z z

s , (3.8a)

E=
1

1 − q
r 1 − e 0 0 0 · · ·

1 − ed 1 − eq 0 0 · · ·
0 1 − edq 1 − eq2 0 · · ·
0 z z z z

s , (3.8b)

we find that they satisfy the algebraic rule (3.3a) for arbitrary choices of d
and e.
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Let us call {|nP}n \ 1 the vector of the associated basis. If we look for
vectors |VP and OW| of the form

OW|= C
.

n=1

11 − ra

ra

2n

On| (3.9a)

|VP= C
.

n=1

1 rb

1 − rb

2n (ed; q)n − 1

(q; q)n − 1
|nP (3.9b)

where ra and rb are for the moment arbitrary and the symbol (x; q)i stands
for the q-shifted factorial defined by (x; q)0=1 and

(x; q)i= D
i − 1

k=0
(1 − xqk) for k > 0 (3.10)

one can check that (3.9a) and (3.9b) fulfill the algebraic rules (3.3b) and
(3.3c) if the parameters ra, rb, d and e satisfy:

a

ra
−

c

1 − ra
=1 − q (3.11a)

b

1 − rb
−

d

rb
=1 − q (3.11b)

d=
d(1 − rb)

brb
(3.11c)

and

e=
cra

a(1 − ra)
. (3.11d)

Note that the parameters ra and rb defined by (1.1a) and (1.1b), that we
interpreted as the reservoir densities, are the unique solutions of Eqs. (3.11a)
and (3.11b) such that 0 [ ra [ 1 and 0 [ rb [ 1 (this is why we use the
same symbols in (3.9) and (1.1)).

If we use this representation when q < 1 (which is not a restriction due
to the left-right symmetry), we see that the condition for OW| X |VP to be
finite when X is an arbitrary product of D and E is that ra > rb, leading
to (2.2). In Section 5, we will show that this representation remains valid
for some part of the domain q > 1, thus allowing us to extend the result of
Section 2.
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3.3. The Sum over Paths and the Derivation of (2.3)

The basic idea of our derivation of (2.3) is to expand the matrix pro-
ducts such as (3.1) or (3.7) as a sum over paths, (12) in much the same way as
the path integral formulation of quantum mechanics.

Consider the set of discrete walks w of k steps. Let ni(w) (0 [ i [ k) be
the integer position of the walk after the ith step. The walks we consider
remain positive ni > 0 and their increment at each step satisfies

ni > 0 and − L i [ ni − ni − 1 [ L i. (3.12)

From (3.7), we deduce

qL1, L2,..., Lk
(N1, N2,..., Nk)

=
1

ZL(q)
C
w
OW | n0POnk | VP D

k

i=1
Oni − 1 | XLi

(Ni) |niP (3.13)

where Xl(N) has been defined in (3.7).
In the large L limit (with q=1 − l

L), (1.1a) and (1.1b) become

ra=
a

a+c
+O 1 1

L
2 rb=

d

b+d
+O 1 1

L
2 (3.14)

and (3.11d), (3.11c)

d=1+O 1 1
L
2 e=1+O 1 1

L
2 . (3.15)

To compute (3.13) when 1 ° L i ° L, let us evaluate On| Xl(N) |nŒP when
1 ° l ° L. When n, nŒ are of order L with |n − nŒ| [ l ° L, we see that for
m and mŒ in (min(n, nŒ) − l, max(n, nŒ)+l) all the non-zero elements of
matrix Om| D |mŒP and OmŒ| E |mP are equivalent to

Om| D |mŒP ’ OmŒ| E |mP ’ (1 − e− ln
L )

L
l

. (3.16)

The computation of On| Xl(N) |nŒP is thus reduced to an enumeration
problem. This leads to

On| Xl(N) |nŒP 4 5(1 − e− ln
L )

L
l
6 l

C
n+ − n − =nŒ − n

1 l
N
21 N

n+

21 l − N
n−

2 (3.17)
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where ( l
N) is the number of words of length l with N matrices D and l − N

matrices E, n+ is the number of matrix elements of the form Om| D |m+1P
and n− the number of matrix elements of the form Om| E |m − 1P.

Looking at the values of n+ and n− which dominate (3.17) one obtains

log On| Xl(N) |nŒP

=l 5− log
l

L
+log(1 − e−ly) − r log r − (1 − r) log(1 − r)

− (1 − r+yŒ) log(1 − r+yŒ) − (r − yŒ) log(r − yŒ)+o(1)6 (3.18)

where y, yŒ, and r are defined by

y=
n
L

, yŒ=
nŒ − n

l
, and r=

N
l

. (3.19)

As Li
L Q 0 while L i Q ., one can associate to each walk w a continuous

function y(x)

y(xi)=
ni(w)

L
(3.20)

with xi=; i
j=1

Lj

L . For each walk y(x) and each density profile r(x) such
that

y(x) > 0 and r(x) − 1 [ yŒ(x) [ r(x) (3.21)

(these restrictions on the path y come from ni(w) > 0 (see (3.12))
and the condition for On| Xl(N) |nŒP ] 0 (see (3.17))), let us define
G({y(x)}, {r(x)}) by

G({y(x)}, {r(x)})=y(0) log
ra

1 − ra
+y(1) log

1 − rb

rb

+F
1

0
dx 5− log

1 − e−ly

l
+r log r+(1 − r) log(1 − r)

+(1 − r+yŒ) log(1 − r+yŒ)+(r − yŒ) log(r − yŒ)6 .

(3.22)
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Then expression (3.13) leads to (after replacing the sum over w by a sup
over w)

log qL1, L2,..., Lk
(N1, N2,..., Nk) 4 log PL({r(x)}) (3.23)

4 L sup
y

[Kl(ra, rb) −G({y(x)}, {r(x)})]
(3.24)

with Kl(ra, rb) given by

Kl(ra, rb)= lim
L Q .

1 log L −
log ZL(1 − l

L)
L

2 (3.25)

which is the expression (2.3).
In order to compute Kl(ra, rb), we could use a similar method to

estimate ZL(q) in (3.25); we will rather use the property that the most likely
profile r̄ must verify F({r̄(x)}; ra, rb)=0, so we delay the computation of
Kl(ra, rb) until the end of Section 3.5. Of course both methods give the
same result.

3.4. Derivation of (2.7)

As the functions − log(1 − e−ly(x)), (r(x) − yŒ(x)) log(r(x) − yŒ(x)), and
(1 − r(x)+yŒ(x)) log(1 − r(x)+yŒ(x)) are convex functions of y for every
value of x, the function G({y(x)}, {r(x)}) in (3.22) is a sum of convex
functions, and is thus convex.

Therefore there is a unique walk ym(x) which minimizes G({y(x)},
{r(x)}), so

F({r(x)}; ra, rb)=G({ym(x)}, {r}) − Kl(ra, rb). (3.26)

This minimum is not reached at the boundary of (3.21). Thus ym(x) is the
unique stationary point, solution of “G({y}, {r})

“y(x) |y=ym
=0 and it satisfies:

rŒ(x) − y'

m(x)
(1 − r(x)+y −

m(x))(r(x) − y −

m(x))
− l

e−lym(x)

1 − e−lym(x)=0 (3.27)

with the boundary conditions

1 − r(0)+y −

m(0)=ra 1 − r(1)+y −

m(1)=rb (3.28)

in addition to the general condition (3.21).
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To obtain an expression similar to (1.3), we rewrite (3.27) using the
function F(x) defined by

F(x)=1 − r(x)+y −

m(x). (3.29)

This lead to

FŒ(x)
F(x)(1 − F(x))

=−l
e−lym(x)

1 − e−lym(x) (3.30)

with the boundary conditions

F(0)=ra F(1)=rb. (3.31)

The conditions on the walk (3.21) imply

0 [ F(x) [ 1 (3.32)

and as y > 0 (see (3.21) and (3.30))

FŒ(x) < 0. (3.33)

By eliminating y between (3.29) and (3.30) we get (2.8).
The expression of the large deviation functional can be rewritten in

terms of F instead of ym in (2.3). From (3.30), we see that

log(1 − e−lym)=log
lF(1 − F)

lF(1 − F) − FŒ
. (3.34)

If we integrate by part the term >1
0 dx yŒ(x) log 1 − r(x)+y−(x)

r(x) − y −(x)
in (2.3), we get

F
1

0
dx yŒ log

1 − r+yŒ

r − yŒ

=5y log
1 − r+yŒ

r − yŒ

61

0
+F

1

0
dx

y(rŒ − yœ)
(1 − r+yŒ)(r − yŒ)

(3.35)

=y(1) log
rb

1 − rb
− y(0) log

ra

1 − ra
+F

1

0

FŒ dx
lF(1 − F)

log
− FŒ

lF(1 − F) − FŒ

(3.36)

and thus (2.3) leads to (2.7).
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Let us now justify (2.10). If we define

H({r}, {f})=−Kl(ra, rb)+F
1

0

3r(x) log r(x)+(1 − r(x)) log(1 − r(x))

+(1 − r(x)) f(x) − log(1+ef(x))

+
fŒ(x)

l
log 1 − fŒ(x))+(1 −

fŒ(x)
l

2 log(l − fŒ(x))4 , (3.37)

expression (2.7) implies that when F is solution of (2.8) with condition (2.9)
then

F({r}; ra, rb)=H 1{r}, 3 log 1 F
1 − F

242 . (3.38)

As − log(1+ef(x)) and f
−(x)
l

log( − fŒ(x))+(1− f
−(x)
l

) log(l − fŒ(x)) are con-
cave function of f for fŒ < 0, H({r}, {f}) is a concave function of f. So
(2.8) is equivalent to the condition for F to maximize H({r}, {log( F

1 − F)})
under the constraint (2.9) and FŒ < 0, i.e.,

“H({r}, {log( F
1 − F)})

“F
=0. (3.39)

So (3.38) can be written as

F({r(x)}; ra, rb)=sup
F

5H 1{r}, 3 log 1 F
1 − F

2426 (3.40)

where the sup is taken over decreasing functions F with the condition (2.9),
leading to (2.10).

3.5. The Most Likely Profile

From (2.10), we get

“F({r(x)}; ra, rb)
“r(x)

=log
r(1 − F)
(1 − r) F

(3.41)

so that for the most likely profile r̄(x)

F(x)=r̄(x). (3.42)
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Equation (2.8) thus becomes

r̄œ=lr̄Œ(1 − 2r̄) (3.43)

with boundary conditions

r̄(0)=ra and r̄(1)=rb. (3.44)

Integrating (3.43) once, we get constant parameter J

r̄Œ=lr̄(1 − r̄) − J. (3.45)

The boundary conditions (3.44) determine J as given by Eq. (2.5) and r̄

by (2.11).
One can show that (2.7) implies that

Oyiyi+1P=OyiPOyi+1P+O 1 1
L
2 (3.46)

(see, for example, ref. 23 for the case l=0).
In particular Oyi(1 − yi+1)P 4 OyiPO1 − yi+1P and (3.5) for q=1 − l

L
leads to

j=
l

L
r̄(1 − r̄) −

r̄Œ

L
+o 1 1

L
2 . (3.47)

Comparing (3.47) to (3.45) leads to relation (2.6) between J and the
current j.

Depending on the reservoir densities ra and rb, one gets various
expression for the most likely profile r̄(x)

• when ra − rb > l(ra − 1
2)(rb − 1

2) then J > l

4 :

r̄(x)=
1
2

−=J − l/4
l

tan[`l(J − l/4)(x − x0)] (3.48)

• and when ra − rb < l(ra − 1
2)(rb − 1

2) then J < l

4 and

r̄(x)=
1
2
+=l/4 − J

l
coth[`l(l/4 − J)(x − x0)] (3.49)

where x0 and J are chosen to satisfy (3.44).
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Starting with the expression of the most likely profile, one can get an
equation for Kl(ra, rb) by writing that

F({r̄}; ra, rb)=0. (3.50)

Introducing Eqs. (3.42) and (3.45) in expression (2.7) and solving (3.50) we
get expression (2.4) for Kl(ra, rb).

4. LIMITING CASES

In this section we show how previously known expressions (1.3)–(1.7)
can be recovered as limiting cases of the results (2.3)–(2.11) of the present
paper.

4.1. The SSEP Limit

Let us first consider the small l limit. Expression (2.5) for the current
can be expanded in powers of l.

j=
ra − rb

L
+

l

L
1 ra+rb

2
−

r2
a+rarb+r2

b

3
2+O(l2) (4.1)

in agreement (when l Q 0) with j=ra − rb
L of ref. 3.

The large deviation functional (2.7) becomes for small l

F=F
1

0
dx 3r log 1 r

F
2+(1 − r) log 1 1 − r

1 − F
2+log(−FŒ) −

lF(1 − F)
2FŒ

4

+1 − Kl(ra, rb)+O(l2). (4.2)

The leading order in l agrees with the SSEP expression (1.3) as the con-
stant Kl(ra, rb) given by (2.4) becomes

Kl(ra, rb)=log(ra − rb)+1+O(l) (4.3)

and Eq. (1.5) for F is the limiting case of (2.8) when l Q 0. Furthermore
one can check that the most likely profile (2.11) becomes linear as J=
Lj Q ra − rb in the small l limit. Thus the results known for SSEP are
recovered from our general l case in the limit l Q 0.
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4.2. The ASEP Limit for ra >rb

Let us now see how the strongly asymmetric case (1.6) can be recov-
ered from (2.7) for large l. We see that for large l, the solution J of (2.5) is
J 4 maxrb [ r [ ra

lr(1 − r), so that

j ’ sup
rb [ r [ ra

l

L
r(1 − r) when ra > rb (4.4)

in agreement with refs. 18 and 30, and that Kl(ra, rb) 4 log J in (2.4) so
that (2.10) reduces to (1.6).

An interesting aspect of this large l limit is to see how the solution F
of (2.8) becomes for large l the function F constructed from 1 − r(x) by the
Maxwell construction explained after Eq. (1.7). When l becomes large,
(2.8) implies that F 4 1 − r or FŒ 4 0. Therefore one expects a succession of
domains where F(x) 4 1 − r(x) and domains where F(x) is constant, with
the remaining contraints that F is monotone and rb [ F(x) [ ra

In a domain where F(x) 4 1 − r(x), one can expand F in powers of 1
l

F=1 − r+
1
l
5rŒ

1 − 2r

r(1 − r)
−

rœ

rŒ

6+O 1 1
l2
2 . (4.5)

The condition FŒ < 0 (3.33) implies that in such domains rŒ > 0.
In a domain t < x < u where F(x) 4 C is almost constant, neglecting

FŒ
2 in (2.8) (as FŒ

2 ° lFŒ) gives

FŒ(x)=B exp 5− l F
x

t
(C − 1+r(xŒ)) dxŒ6 (4.6)

where B is constant over the whole domain t < x < u.
The next question is to understand for large l the transitions between

these different domains.
A first possibility is that F(x) (which is monotone) becomes discon-

tinuous at such transition point. This is the case for example when 1 − r(x)
is decreasing and discontinuous, implying that F(x) has a variation of the
order of 1 (the discontinuity of r) over a range in x of order of 1

l
. This case

can be analysed without difficulty, but we won’t discuss it here.
The other possibility is that for large l, F remains continuous but FŒ

becomes discontinuous. This is what happens for example on Fig. 1: for
large l there is a succession of domains where F=1 − r(x) and where F is
constant.
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Fig. 1. F(x) solution of (2.8) versus x for a given profile r(x) and reservoir densities
ra=0.9, rb=0.3 when l takes the value 1, 100, and 10000. The full-curve is 1 − r(x). The
curves are obtained by minimizing (2.3) numerically for y(x) (discretized over 200 points).
F(x) is then calculated from y(x) by relation (3.29). For large l, we see a succession of
domains where F=1 − r(x) and where F is constant satisfying the Maxwell construction.

Let us consider a domain where F(x)=1 − r(t)=1 − r(u) for
t < x < u in the large l limit, surrounded by two domains where F(x)=
1 − r(x). At the transition point t, the solution of (2.8) takes a scaling form

F(x) − 1+r(x)==rŒ(t)
l

G((x − t) `rŒ(t) l) (4.7)

where G is solution of

Gœ=G(1 − GŒ). (4.8)

For F to match the solution 1 − r(x)+O( 1
l
) for x=t − 0 and 1 − r(t)+o(1)

for x=t+0, one needs that

G(z) Q 0 when z Q −. (4.9)

G(z)=z+o(1) when z Q .. (4.10)

It can be shown that then G is solution of

GŒ=1+W(Ae− G2

2 ) (4.11)

where W is the product logarithm function (also called the Lambert func-
tion, see ref. 31) defined here as the largest real solution of

W(x) eW(x)=x. (4.12)
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Condition (4.9) determines A=−e−1 (as W( − e−1)=−1). Using that for x
small W(x) 4 x, the limit of G for large z can be computed

G(z) − z ’
1
e

F
.

z
e− zŒ2

2 dzŒ. (4.13)

It gives for the asymptotic regime (when 1
`l

° x − t ° 1) of FŒ

FŒ(x) ’ −
rŒ(t)

e
e− rŒ(t) l

2
(x − t)2

. (4.14)

At the other boundary u of the domain, F has a similar scaling form.

F(x) − 1+r(x)=−=rŒ(u)
l

G( − (x − u) `rŒ(u) l) (4.15)

with the same G solution of (4.8). This gives for the asymptotic regime
1

`l
° − (x − u) ° 1

FŒ(x) 4 −
rŒ(u)

e
e− rŒ(u) l

2
(x − u)2

. (4.16)

For the asymptotics of (4.6)

FŒ(x) ’ Be− rŒ(t) l

2
(x − t)2

(4.17)

to match with (4.14) as x Q t and with (4.16) when x Q u

FŒ(x) ’ Be[− l > u
t (C − 1+r(xŒ)) dxŒ] −

rŒ(u) l

2
(x − u)2

(4.18)

one needs that to the leading order in l

F
u

t
(C − 1+r(xŒ)) dxŒ=0 (4.19)

which is the Maxwell construction (1.8). We see that the constant C,
the value of F(x) in a domain where F is constant, is determined by an
expression (4.19) which is obtained from two matching conditions at the
boundaries of the domain. This is very similar to the Bohr–Sommerfeld
rule which determines the energy levels in the WKB method. (27, 28) So the
Maxwell construction here has a mathematical origin similar to the Bohr
Sommerfeld rule.
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5. EXTENSION OF OUR RESULTS

5.1. Extension of the Domain (2.2)

We are going to show that our results of Section 2, initially derived in
the domain (2.2) remain valid for

l > 0; el
1 − rb

rb

ra

1 − ra
< 1. (5.1)

The representation of the algebra for D, E, |VP, and OW| introduced
in Section 3.2 remains valid for some range of the parameter ra and rb

when q > 1. Indeed, for large n the non-zero matrix elements of the kind
On| D |nŒP and OnŒ| E |nP behave then like qn. Furthermore, (ed; q)n

(q; q)n
’ ( ed

q )n for
large n. Thus, using (3.11c) and (3.11d), we get that for any product X of
L matrices D or E (and any sum of such product) OW | nPOn| X |VP ’

( cd

ab
qL − 1)n and the condition for OW| X |VP to be finite is

cd

ab
qL − 1 < 1. (5.2)

When q=1 − l

L and in the large L limit, this leads to (using (3.14))

l < 0 e−l
1 − ra

ra

rb

1 − rb
< 1. (5.3)

So all the content of Sections 3.3 to 3.6 remains valid, leading thus to for-
mulas (2.3)–(2.11). The only change is that in (2.10), the sup is now over
decreasing functions F such that for every x, lF(x)(1 − F(x)) − FŒ(x) > 0.

In order to recover the expressions for l > 0, we use the left-right
symmetry of the system, replacing l by − l, x by 1 − x, ra by rb,... so that
condition (5.3) becomes (5.1).

When condition (5.1) is fulfilled, J given by (2.5) is negative, and thus
there is a current j going from the reservoir with the highest density rb to
the reservoir with the lowest density ra, despite the external bias q. The
most likely profile, solution of (3.45) and (3.44) is now given by

r̄(x)=
1
2
+=l/4 − J

l
tanh `l(l/4 − J)(x − x0). (5.4)

5.2. The Detailed Balance Case

We show now that (2.7) remains also valid when the boundary
parameters a, b, c, and d are such that detailed balance is satisfied.
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Detailed balance means that the probability of observing a transition from
a microscopic configuration C to another CŒ is equal to the probability of
observing the reversed transition (from CŒ to C).

Let {yi} be the occupation numbers of a given microscopic configura-
tion. Detailed balance corresponding to a jump of a particle between sites k
and k+1 means that

P({y1,..., yk − 1, 0, 1, yk+2,..., yL})=q−1P({y1,..., yk − 1, 1, 0, yk+2,..., yL})
(5.5)

where P({yi}) is the steady state probability of configuration {yi}.
The detailed balance relation at the left boundary is

P({1, y2,..., yL})=
a

c
P({0, y2,..., yL}) (5.6)

and at the right boundary

P({y1,..., yL − 1, 1})=
d

b
P({y1,..., yL − 1, 0}). (5.7)

Starting from a configuration with occupation number {yi}, one can
always use (5.5) and (5.6) to calculate the weights of all configurations by
removing particles at the left boundary.

P({yi})=D
L

i=1

1 a

cq i − 1
2yi

P({0, 0,..., 0}). (5.8)

For general values of a, b, c, and d, these weights do not satisfy (5.7) and
are not steady state weights. If we insist however that (5.8) satisfies also
(5.7), we get

qL − 1 cd

ab
=1 (5.9)

which is the detailed balance condition, and if (5.9) is satisfied, we get

P({yi})=
<L

i=1 ( a

qi − 1c
)yi

<L
i=1 (1+ a

qi − 1c
)

. (5.10)
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The average density at site i is thus given by

r̄ 1 i
L
2=

1
1+q i − 1 c

a

. (5.11)

In the weak asymmetry regime (2.1), expression (5.9) and (5.11)
become

el
1 − rb

rb

ra

1 − ra
=1 (5.12)

and

r̄(x)=
ra

ra+(1 − ra) e−lx (5.13)

whereas (5.10) leads to the following expression for the large deviation
functional

F({r(x)}; ra, rb)=F
1

0

3r log
r(x)
r̄(x)

+(1 − r(x)) log 11 − r(x)
1 − r̄(x)

24 dx.
(5.14)

Note that (5.12) corresponds to the boundary of the range of parameters
(5.1) where we have shown (2.7) to be valid. Although our derivation of
(2.7) was not a priori valid when detailed balance (5.12) is satisfied (see
(5.1)), we are going to see now that (5.13) and (5.14) can nevertheless be
recovered.

When detailed balance (5.12) holds, one can check that

F(x)=r̄(x)=
ra

ra+(1 − ra) e−lx (5.15)

is solution of (2.8) for arbitrary r(x). So (5.12) implies that F(x) does not
depend on r(x). As F(x) given by (5.15) satisfies

FŒ=lF(1 − F), (5.16)

one can see that (2.7) reduces to (5.14).
On can also check that when detailed balance is satisfied the current

(2.5), (2.6) vanishes and that J=0 in (2.5) is equivalent to (5.12).
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6. CONCLUSION

In the present work, we have obtained the expressions (2.3), (2.7),
(2.10) for the large deviation functional of the one dimensional simple
exclusion process in the weak asymetry regime (2.1). Our analysis of the
limiting cases (l Q 0 and l Q .) has shown that these new expressions are
consistent with previously known expressions for the SSEP and the ASEP.

For technical reasons, our derivation is limited to some ranges of
parameter (2.2), (5.1), or (5.12). It would of course be useful to know what
happens in the other ranges of parameters, if our results remain valid or
not and how the ASEP result (1.9) can be recovered.

The derivation of our results, based on the matrix representation of
the steady state, uses strongly that the steady state weights of the configu-
rations can be written as sums over paths of the weights of these paths.
We used a similar idea recently to study the density fluctuations in the
TASEP. (12) These paths have so far a purely mathematical origin and it
would be of course interesting to give them a physical interpretation.

Another interesting question would be to see whether the results of
the present paper could be understood using the macroscopic fluctuation
theory. (21, 24)

APPENDIX A: DEFINITION (1.1) OF THE DENSITIES ra AND rb OF

THE RESERVOIR

When the boundary parameters a, b, c, and d satisfy a certain relation
((A.4) below), the steady state is a Bernoulli measure at density r and one
can consider that the two reservoirs are at this same density r.

When the steady state is a Bernoulli measure at density ra, the steady
state current (3.5) in the bulk is given by

j=(1 − q) ra(1 − ra) (A.1)

and at the left boundary, by

j=a(1 − ra) − cra. (A.2)

The conservation of particles implies that (A.1) and (A.2) should coincide
and this gives condition (3.11a) for ra. If one repeats the same argument at
the right boundary, one gets that rb should satisfy

(1 − q) rb(1 − rb)=brb − d(1 − rb) (A.3)
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leading to Eq. (3.11b). The solutions of (3.11a) and (3.11b) (satisfying
0 [ ra [ 1, 0 [ rb [ 1) are given in (1.1a) and (1.1b). One recovers in par-
ticular ra=min( a

1 − q , 1), rb=max(1 − b

1 − q , 0) when c=d=0 as in ref. 25,
and ra= a

a+c , rb= d

b+d
when q Q 1 as in ref. 23. Comparing (3.11a) and

(3.11b), one can check that for the two reservoirs to be at the same density
r (i.e., for ra=rb=r), the boundary parameters should satisfy

(a+d)(b+c)(1 − q)=(ab − cd)(a+b+c+d). (A.4)

Let us now verify that when ra=rb=r, the steady state measure
is indeed a Bernouilli measure at density r. Consider a configuration {yi}
with the steady state probability P. The probability of leaving this config-
uration during the time interval dt is

[(1+c) y1+a(1 − y1)+nc(1+q)+d(1 − yL)+(b+q) yL] P dt (A.5)

where nc is the number of clusters of particles in {yi} which do not touch a
boundary.

If the steady state is Bernoulli at density r, the probability of entering
the configuration {yi} is

5y1
1q+a

1 − r

r
2+c

r

1 − r
(1 − y1)+nc(1+q)

+yL
11+d

1 − r

r
2+b

r

1 − r
(1 − yL)6 P dt. (A.6)

For (A.5) and (A.6) to be equal for any {yi}, one needs that

1+c − a=q+a
1 − r

r
− c

r

1 − r
, (A.7)

− d+b+q=1+d
1 − r

r
− b

r

1 − r
, (A.8)

a+d=c
r

1 − r
+b

r

1 − r
. (A.9)

Comparing (A.7) and (A.8) to (3.11a) and (3.11b), one sees that

r=ra=rb (A.10)

whereas (A.9) is equivalent to the difference of (3.11a) and (3.11b) so is
automatically satisfied.
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